David Gogiberidze

Holland PA, 18966 215-214-9334

EDUCATION

Pennsylvania State University

Bachelor of Science in Computer Engineering (University Park, PA) GPA: **3.73**

SKILLS

Languages: Java, Python, C#, C, Unix, SQL, Verilog/System Verilog, Assembly, MIPS

Hardware Design: MultiSIM, LTSpice, Vivado, Altium Designer, KiCad, Cadence Virtuoso, Quartus Prime.

RELEVANT COURSES

Data Structures & Algorithms, Computer Architecture, OS programing, BJTS/MOSFETS, Signals and Systems, Statistics, Communication Networks, Digital Integrated Circuit Design, Embedded/Micro Systems, Systems Debugging

PROJECT EXPERIENCE

High-Quality USB Audio Digital-Analog Converter

USB DAC implementing the PCM1792A supporting up to 192KHz/24-bit audio playback

· Created the schematic and laid out a 4-layer PCB with minimal susceptibility to noise, incorporating power planes,

ground planes, and signal isolation with optimal component placement to ensure high audio quality.

· Designed an Op Amp filtering stage to convert differential analog current outputs to a 2V RMS line out.

· Developed firmware for the XU316 microcontroller in C to function as a USB to I2S transceiver and I2C master

• Utilized I2C to interface with the CS2100 PLL Synthesizer, enabling low jitter system clock support for sampling frequencies from 44.1KHz to 192KHz.

Five Stage MIPS CPU

Five stage CPU written in Verilog with Vivado that supports 32-bit MIPS instructions

• Architected and implemented a five-stage pipelined CPU in Verilog within AMD Vivado, supporting a reduced 32-bit MIPS instruction set.

· Created modules for essential CPU components, including multiplexers, an ALU, control units, and registers.

• Designed comprehensive testbenches and test cases to validate MIPS instruction functionality and correctness, using waveform analysis for accurate verification.

• Integrated forwarding and hazard detection mechanisms to address pipeline hazards, reduce stalls and improve instruction throughput.

Dynamic Out-of-Order CPU Scheduling Simulator

Accepts an input list of RISC instructions and outputs the cycle that an instruction will be completed

• Developed a cycle-accurate pipelined CPU simulator in Python that implements O-o-O scheduling with conservative loadstore ordering implementing register renaming using a free list.

• Modeled important CPU stages: Fetch, Decode, Rename, Dispatch, Issue, Writeback, Commit and handled dependencies that might occur between stages.

• Designed the simulator to process up to 256 instructions with a configurable issue width and number of physical registers.

WORK EXPERIENCE

Systems Engineering Intern | Exelon

ComED Renewable Energy Advanced Control and Telemetry Systems Engineer

 \cdot Developed the front end of an internal data management tool using HTML, CSS, and JavaScript.

 \cdot Collaborated with team members using git and fixed bugs to enhance user experience and data reporting accuracy.

• Utilized Power BI to create interactive dashboards and reports that displayed metrics and trends from an internal database.

• Presented data collection tools in team meetings to demonstrate functionality, gather feedback, and drive continuous improvement.

<u>dhavidgogi@gmail.com</u> linkedin.com/in/davidgogi

Aug 2021—May 2025

Aug 2023—Dec 2023

Jan 2024—May 2024

June 2023—Aug 2024

May 2024—Sep 2024